4,691 research outputs found

    Nanoflare Evidence from Analysis of the X-Ray Variability of an Active Region Observed with Hinode/XRT

    Get PDF
    The heating of the solar corona is one of the big questions in astrophysics. Rapid pulses called nanoflares are among the best candidate mechanisms. The analysis of the time variability of coronal X-ray emission is potentially a very useful tool to detect impulsive events. We analyze the small-scale variability of a solar active region in a high cadence Hinode/XRT observation. The dataset allows us to detect very small deviations of emission fluctuations from the distribution expected for a constant rate. We discuss the deviations in the light of the pulsed-heating scenario.Comment: 6 pages, 4 figure

    Excisional treatment of cavernous hemangioma of the liver

    Get PDF
    Fifteen patients had hepatic hemangiomas removed with liver resections that ranged in extent from local excision to right trisegmentectomy. There was no mortality and little morbidity. The propriety and feasibility of extirpative treatment of such liver tumors has been emphasized by this experience

    All Coronal Loops are the Same: Evidence to the Contrary

    Full text link
    The 1998 April 20 spectral line data from the Coronal Diagnostics Spectrometer (CDS) on the {\it Solar and Heliospheric Observatory} (\SOHO) shows a coronal loop on the solar limb. Our original analysis of these data showed that the plasma was multi-thermal, both along the length of the loop and along the line of sight. However, more recent results by other authors indicate that background subtraction might change these conclusions, so we consider the effect of background subtraction on our analysis. We show Emission Measure (EM) Loci plots of three representative pixels: loop apex, upper leg, and lower leg. Comparisons of the original and background-subtracted intensities show that the EM Loci are more tightly clustered after background subtraction, but that the plasma is still not well represented by an isothermal model. Our results taken together with those of other authors indicate that a variety of temperature structures may be present within loops.Comment: Accepted for publication in ApJ Letter

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT

    Comparison of Solar Fine Structure Observed Simultaneously in Ly-{\alpha} and Mg II h

    Full text link
    The Chromospheric Lyman Alpha Spectropolarimeter (CLASP) observed the Sun in H I Lyman-{\alpha} during a suborbital rocket flight on September 3, 2015. The Interface Region Imaging Telescope (IRIS) coordinated with the CLASP observations and recorded nearly simultaneous and co-spatial observations in the Mg II h&k lines. The Mg II h and Ly-{\alpha} lines are important transitions, energetically and diagnostically, in the chromosphere. The canonical solar atmosphere model predicts that these lines form in close proximity to each other and so we expect that the line profiles will exhibit similar variability. In this analysis, we present these coordinated observations and discuss how the two profiles compare over a region of quiet sun at viewing angles that approach the limb. In addition to the observations, we synthesize both line profiles using a 3D radiation-MHD simulation. In the observations, we find that the peak width and the peak intensities are well correlated between the lines. For the simulation, we do not find the same relationship. We have attempted to mitigate the instrumental differences between IRIS and CLASP and to reproduce the instrumental factors in the synthetic profiles. The model indicates that formation heights of the lines differ in a somewhat regular fashion related to magnetic geometry. This variation explains to some degree the lack of correlation, observed and synthesized, between Mg II and Ly-{\alpha}. Our analysis will aid in the definition of future observatories that aim to link dynamics in the chromosphere and transition region.Comment: Accepted by Ap

    THE PRODUCTION OF VESICULAR STOMATITIS VIRUS BY ANTIGEN- OR MITOGEN-STIMULATED LYMPHOCYTES AND CONTINUOUS LYMPHOBLASTOID LINES

    Get PDF
    A variety of lymphoid cell populations were examined in terms of their ability to replicate vesicular stomatitis virus (VSV), a lytic, RNA-containing virus maturing at the cell surface. The number of cells capable of producing VSV was estimated in terms of infectious centers by the virus plaque assay (VPA), and morphologically by electron microscopy (EM). The lymphoid cells examined in this study included: (a) lymph node cells from delayed hypersensitive guinea pigs stimulated by specific antigen, (b) mouse spleen cells activated by selective bone marrow-derived (B) cell and thymus derived (T) cell mitogens, and (c) cells of human and murine continuous lymphoblastoid or lymphoma lines. In unstimulated cultures of guinea pig lymph node cells there is a background of approximately 1 in 1,000 cells which produces VSV; in purified protein derivative (PPD)-stimulated cultures the number of cells producing virus was 1.6% in the VPA and 1.9% by EM. These cells were large lymphocytes with some morphological features of transformed lymphocytes but were not typical blast cells. A few macrophages were associated with virus in both stimulated and control cultures. These observations indicate that (a) cells responsive to antigens, as detected by a marker virus, were lymphocytes; (b) cells other than lymphocytes (macrophages) were capable of replicating VSV even without antigenic stimulation; and (c) the correlation of results obtained by VPA and morphologic examination was usually quite good. Of the total number of mouse spleen cells stimulated with concanavalin (Con A), a T cell mitogen, 4.5 (EM)–5.7% (VPA) were associated with VSV. These were characteristic transformed lymphocytes, similar to phytohemagglutinin (PHA)-stimulated human lymphocytes. In contrast Escherichia coli lipopolysaccharide (LPS)-treated mouse spleen cultures contained lower numbers of virus plaque-forming cells. The majority of such cells associated with virus displayed extensive rough endoplasmic reticulum. Two cultured murine lymphomas containing lymphocytes with the θ surface marker (L5178Y and EL-4) showed a 15–100-fold higher incidence of virus-producing cells than leukemias (L1210 and C57Bl/6) which did not carry this marker. Similarly, the L2C guinea pig leukemia, a known B cell leukemia, yielded a low percent of virus plaque-forming cells (<2%). However, MOPC-104, a plasma cell tumor presumed to be of B cell origin, was found to be an efficient virus producer. There was a wide variation in the efficiency of VSV replication among human lymphoblastoid lines. One line, Wil-2, produced 80% infectious centers after 24 h of exposure to VSV, and all cells were associated with virus at the EM level. The relationship between the virus-producing cells and different lymphocyte subpopulations as well as the efficiency of the two assays for studying virus-producing lymphocytes is discussed

    Temperature and Emission-Measure Profiles Along Long-Lived Solar Coronal Loops Observed with TRACE

    Get PDF
    We report an initial study of temperature and emission measure distributions along four steady loops observed with the Transition Region and Coronal Explorer (TRACE) at the limb of the Sun. The temperature diagnostic is the filter ratio of the extreme-ultraviolet 171-angstrom and 195-angstrom passbands. The emission measure diagnostic is the count rate in the 171-angstrom passband. We find essentially no temperature variation along the loops. We compare the observed loop structure with theoretical isothermal and nonisothermal static loop structure.Comment: 10 pages, 3 postscript figures (LaTeX, uses aaspp4.sty). Accepted by ApJ Letter
    • …
    corecore